Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Bioact Mater ; 33: 324-340, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38076649

RESUMEN

Myocardial infarction (MI) can be tackled by implanting cardiac patches which provide mechanical support to the heart. However, most tissue-engineered scaffolds face difficulty in attenuating oxidative stress, maintaining mechanical stability, and regenerating damaged cardiomyocytes. Here, we fabricated elastic cryogels using polyurethane modified with antioxidant gallic acid in its backbone (PUGA) and further coated them with decellularized extracellular matrix (dECM) to improve adhesiveness, biocompatibility and hemocompatibility. The scaffold was functionalized with exosomes (EXO) isolated from adipose-derived stem cells having regenerative potential. PUGA-dECM + EXO was tested in a rat model with induced MI where echocardiography after 8 weeks of implantation showed significant recovery in treatment group. Histological analysis revealed a decrease in fibrosis after application of patch and promotion of angiogenesis with reduced oxidative stress was shown by immunostaining. Expression of cardiac tissue contractile function marker was also observed in treatment groups. Thus, the proposed biomaterial has a promising application to be utilized as a patch for cardiac regeneration. More detailed studies with larger animal species are needed for using these observations for specific applications.

2.
Basic Res Cardiol ; 118(1): 46, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923788

RESUMEN

Regulation of RNA stability and translation by RNA-binding proteins (RBPs) is a crucial process altering gene expression. Musashi family of RBPs comprising Msi1 and Msi2 is known to control RNA stability and translation. However, despite the presence of MSI2 in the heart, its function remains largely unknown. Here, we aim to explore the cardiac functions of MSI2. We confirmed the presence of MSI2 in the adult mouse, rat heart, and neonatal rat cardiomyocytes. Furthermore, Msi2 was significantly enriched in the heart cardiomyocyte fraction. Next, using RNA-seq data and isoform-specific PCR primers, we identified Msi2 isoforms 1, 4, and 5, and two novel putative isoforms labeled as Msi2 6 and 7 to be expressed in the heart. Overexpression of Msi2 isoforms led to cardiac hypertrophy in cultured cardiomyocytes. Additionally, Msi2 exhibited a significant increase in a pressure-overload model of cardiac hypertrophy. We selected isoforms 4 and 7 to validate the hypertrophic effects due to their unique alternative splicing patterns. AAV9-mediated overexpression of Msi2 isoforms 4 and 7 in murine hearts led to cardiac hypertrophy, dilation, heart failure, and eventually early death, confirming a pathological function for Msi2. Using global proteomics, gene ontology, transmission electron microscopy, seahorse, and transmembrane potential measurement assays, increased MSI2 was found to cause mitochondrial dysfunction in the heart. Mechanistically, we identified Cluh and Smyd1 as direct downstream targets of Msi2. Overexpression of Cluh and Smyd1 inhibited Msi2-induced cardiac malfunction and mitochondrial dysfunction. Collectively, we show that Msi2 induces hypertrophy, mitochondrial dysfunction, and heart failure.


Asunto(s)
Insuficiencia Cardíaca , Animales , Ratones , Ratas , Cardiomegalia , Proteínas de Unión al ADN/metabolismo , Insuficiencia Cardíaca/metabolismo , Mitocondrias/metabolismo , Proteínas Musculares/genética , Miocitos Cardíacos/metabolismo , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacología , ARN Mensajero/metabolismo , ARN Mensajero/farmacología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/farmacología
3.
Vascul Pharmacol ; 152: 107197, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37467910

RESUMEN

AIMS: Myocardial ischemia and infarction are the number one cause of cardiovascular disease associated mortality. Cardiomyocyte death during ischemia leads to the loss of cardiac tissue and initiates a signaling cascade between the infarct zone and the area at risk of the myocardium. Here, we sought to determine the involvement of one of the damage-associated molecular patterns HMGB3 in myocardial ischemia and infarction. METHODS AND RESULTS: We used the left anterior descending coronary artery ligation model to study the involvement of HMGB3 in myocardial ischemia and infarction. Our results indicated the presence of HMGB3 at a low level under normal conditions, while myocardial injury caused a robust increase in HMGB3 levels in the heart. Further, intra-cardiac injection of mabHMGB3 had improved cardiac function at day 3 by downregulating HMGB3 levels. In contrast, injection of recombinant rat HMGB3 for 7 days during the adaptation phase of myocardial ischemia improved cardiac functional parameters by increasing regenerative protein family expression. Further, to mimic the disease condition, neonatal rat ventricle cardiomyocytes and fibroblasts were exposed to hypoxia; we observed a significant upregulation in the HMGB3, HIF1α, and Reg1α levels. Endothelial cells exposed to recombinant HMGB3 increased the tubule length. Further, the mitochondrial oxygen consumption rate was reduced with the acute induction of recombinant HMGB3 on cardiomyocytes and fibroblasts. CONCLUSION: HMGB3 plays a dual role during the progression of myocardial ischemia and infarction. Clinically, post-myocardial infarction HMGB3-induced sterile inflammation needs to be tightly controlled, as it plays both a pro-inflammatory role and improves cardiac function during the cardiac remodeling phase.


Asunto(s)
Enfermedad de la Arteria Coronaria , Infarto del Miocardio , Isquemia Miocárdica , Ratas , Animales , Células Endoteliales/metabolismo , Miocardio/metabolismo , Isquemia Miocárdica/complicaciones , Isquemia Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Enfermedad de la Arteria Coronaria/metabolismo , Modelos Animales de Enfermedad
4.
Immunology ; 170(1): 60-82, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37185810

RESUMEN

Nutritional availability during fasting and refeeding affects the temporal redistribution of lymphoid and myeloid immune cells among the circulating and tissue-resident pools. Conversely, nutritional imbalance and impaired glucose metabolism are associated with chronic inflammation, aberrant immunity and anomalous leukocyte trafficking. Despite being exposed to periodic alterations in blood insulin levels upon fasting and feeding, studies exploring the physiological effects of these hormonal changes on quiescent immune cell function and trafficking are scanty. Here, we report that oral glucose load in mice and healthy men enhances the adherence of circulating peripheral blood mononuclear cells (PBMCs) and lymphocytes to fibronectin. Adherence to fibronectin is also observed upon regular intake of breakfast following overnight fasting in healthy subjects. This glucose load-induced phenomenon is abrogated in streptozotocin-injected mice that lack insulin. Intra-vital microscopy in mice demonstrated that oral glucose feeding enhances the homing of PBMCs to injured blood vessels in vivo. Furthermore, employing flow cytometry, Western blotting and adhesion assays for PBMCs and Jurkat-T cells, we elucidate that insulin enhances fibronectin adherence of quiescent lymphocytes through non-canonical signalling involving insulin-like growth factor-1 receptor (IGF-1R) autophosphorylation, phospholipase C gamma-1 (PLCγ-1) Tyr783 phosphorylation and inside-out activation of ß-integrins respectively. Our findings uncover the physiological relevance of post-prandial insulin spikes in regulating the adherence and trafficking of circulating quiescent T-cells through fibronectin-integrin interaction.

6.
Eur J Pharmacol ; 943: 175558, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36731722

RESUMEN

PURPOSE: Protective effect of 17ß-estradiol is well-known in pulmonary hypertension. However, estrogen-based therapy may potentially increase the risk of breast cancer, necessitating a search for novel drugs. This study, therefore, investigated the ameliorative effects of a selective estrogen receptor modulator, ormeloxifene, in pulmonary hypertension. METHODS: Cardiomyocytes (H9C2) and human pulmonary arterial smooth muscle cells (HPASMCs) were exposed to hypoxia (1% O2) for 42 and 96 h, respectively, with or without ormeloxifene pre-treatment (1 µM). Also, female (ovary-intact or ovariectomized) and male Sprague-Dawley rats received monocrotaline (60 mg/kg, once, subcutaneously), with or without ormeloxifene treatment (2.5 mg/kg, orally) for four weeks. RESULTS: Hypoxia dysregulated 17ß-hydroxysteroid dehydrogenase (17ßHSD) 1 & 2 expressions, reducing 17ß-estradiol production and estrogen receptors α and ß in HPASMC but increasing estrone, proliferation, inflammation, oxidative stress, and mitochondrial dysfunction. Similarly, monocrotaline decreased plasma 17ß-estradiol and uterine weight in ovary-intact rats. Further, monocrotaline altered 17ßHSD1 & 2 expressions and reduced estrogen receptors α and ß, increasing right ventricular pressure, proliferation, inflammation, oxidative stress, endothelial dysfunction, mitochondrial dysfunction, and vascular remodeling in female and male rats, with worsened conditions in ovariectomized rats. Ormeloxifene was less uterotrophic; however, it attenuated both hypoxia and monocrotaline effects by improving pulmonary 17ß-estradiol synthesis. Furthermore, ormeloxifene decreased cardiac hypertrophy and right ventricular remodeling induced by hypoxia and monocrotaline. CONCLUSION: This study demonstrates that ormeloxifene promoted pulmonary 17ß-estradiol synthesis, alleviated inflammation, improved the NOX4/HO1/Nrf/PPARγ/PGC-1α axis, and attenuated pulmonary hypertension. It is evidently safe at tested concentrations and may be effectively repurposed for pulmonary hypertension treatment.


Asunto(s)
Hipertensión Pulmonar , Moduladores Selectivos de los Receptores de Estrógeno , Ratas , Masculino , Femenino , Humanos , Animales , Moduladores Selectivos de los Receptores de Estrógeno/efectos adversos , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/prevención & control , Hipertensión Pulmonar/inducido químicamente , Ratas Sprague-Dawley , Receptor alfa de Estrógeno , Monocrotalina/efectos adversos , Estradiol/farmacología , Estradiol/uso terapéutico , Arteria Pulmonar , Inflamación , Hipoxia
7.
Pulm Pharmacol Ther ; 80: 102200, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36842770

RESUMEN

Endothelial dysfunction is critical in the pulmonary vasculature during pulmonary hypertension (PH). Moreover, in PH, increased inflammation and oxidative/nitrosative stress cause DNA damage, activating poly (ADP-ribose) polymerase-1 (PARP-1). Meloche et al. (2014) and our previous research have shown that inhibiting PARP-1 is protective in PH and associated RV hypertrophy. However, the role of PARP-1 in pulmonary arterial endothelial dysfunction has not been explored completely. Therefore, the current study aims to investigate the involvement of PARP-1 in endothelial dysfunction associated with PH. Hypoxia (1% O2) was used to induce a PH-like phenotype in human pulmonary artery endothelial cells (HPAECs), and PARP-1 inhibition was achieved via siRNA (60 nM). For the in vivo study, male Sprague Dawley rats were administered monocrotaline (MCT; 60 mg/kg, SC, once) to induce PH, and 1, 5-isoquinolinediol (ISO; 3 mg/kg) was administered daily intraperitoneally to inhibit PARP-1. PARP-1 inhibition decreased proliferation and inflammation, as well as improved mitochondrial dysfunction in hypoxic HPAECs. Furthermore, PARP-1 inhibition also promoted apoptosis by increasing DNA damage in hypoxic HPAECs. In addition, inhibition of PARP-1 reduced cell migration, VEGF expression, and tubule formation in hypoxic HPAECs. In in vivo studies, PARP-1 inhibition by ISO significantly decreased the RVP and RVH as well as improved endothelial function by increasing the pulmonary vascular reactivity and expression of p-eNOS in MCT-treated rats.


Asunto(s)
Hipertensión Pulmonar , Ratas , Masculino , Humanos , Animales , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Hipertensión Pulmonar/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Ratas Sprague-Dawley , Células Endoteliales/metabolismo
8.
Int J Biol Macromol ; 222(Pt B): 3045-3056, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36243159

RESUMEN

Cell therapy is one of the promising approaches for cardiac repair, subsequently after infarction or injury. However, contemporary mesenchymal stromal/stem cell (MSCs) delivery strategies result in low retention and poor engraftment of donor cells, thus limiting the therapeutic efficacy. Here, we developed an engineered biomimetic cardiogel patch (EBCP) comprising of the native decellularized cardiac extracellular matrix (ECM) "cardiogel" and chitosan, leading to the efficient regeneration of injured myocardium. We also developed novel bio-adhesive that is capable of suture-free epicardial placement of EBCP to injured myocardium. We have illustrated the potential of the mussels-inspired bioadhesive system, which comprises gelatin catechol and partially oxidized chitosan, which relies on self-crosslinking capability, to promote wet adhesion. In vitro studies with isolated cardiogel promoted cell proliferation, adhesion, and migration while aiding cardiomyogenic differentiation. The EBCP's ability to protect cells from abrasion due to surrounding tissues in the myocardial infarction (MI) rat model makes it more desirable. Furthermore, the epicardial implantation of the EBCP loaded with MSCs improves the initial retention of cells and subsequent functional cardiac recovery with enhanced myocardial tissue restoration. Histological examination showed the presence of EBCP and infiltration of cells to the infarcted heart tissue. The fast and facile synthesis of bioadhesive and major therapeutic benefits of EBCP make it a potential candidate for recuperating the ailing heart.


Asunto(s)
Quitosano , Células Madre Mesenquimatosas , Infarto del Miocardio , Ratas , Animales , Quitosano/metabolismo , Miocardio/metabolismo , Infarto del Miocardio/patología , Diferenciación Celular
9.
Free Radic Res ; 56(7-8): 483-497, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36251883

RESUMEN

Involvement of NOX-dependent oxidative stress in the pathophysiology of metabolic disorders as well as in the maintenance of metabolic homeostasis has been demonstrated previously. In the present study, the metabolic profile in p47phox-/- and WT mice fed on a chow diet was evaluated to assess the role of metabolites in glucose intolerance and dyslipidemia under altered oxidative stress conditions. p47phox-/- mice displayed glucose intolerance, dyslipidemia, hyperglycemia, insulin resistance (IR), hyperinsulinemia, and altered energy homeostasis without any significant change in gluconeogenesis. The expression of genes involved in lipid synthesis and uptake was enhanced in the liver, adipose tissue, and intestine tissues. Similarly, the expression of genes associated with lipid efflux in the liver and intestine was also enhanced. Enhanced gut permeability, inflammation, and shortening of the gut was evident in p47phox-/- mice. Circulating levels of pyrimidines, phosphatidylglycerol lipids, and 3-methyl-2-oxindole were augmented, while level of purine was reduced in the serum. Moreover, the cecal metabolome was also altered, as was evident with the increase in indole-3-acetamide, N-acetyl galactosamine, glycocholate, and a decrease in hippurate, indoxyl sulfate, and indigestible sugars (raffinose and melezitose). Treatment of p47phox-/- mice with pioglitazone, marginally improved glucose intolerance, and dyslipidemia, with an increase in PUFAs (linoleate, docosahexaenoic acid, and arachidonic acid). Overall, the results obtained in p47phox-/- mice indicate an association of IR and dyslipidemia with altered serum and cecal metabolites (both host and bacterial-derived), implying a critical role of NOX-derived ROS in metabolic homeostasis.


Asunto(s)
Dislipidemias , Intolerancia a la Glucosa , Resistencia a la Insulina , Ratones , Animales , Insulina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones Noqueados , NADPH Oxidasas/metabolismo , Resistencia a la Insulina/genética , Metaboloma , Dislipidemias/genética , Lípidos , Ratones Endogámicos C57BL
10.
Pulm Pharmacol Ther ; 76: 102156, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36030026

RESUMEN

Excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) and endothelial cells (PAECs), inflammation, as well as mitochondrial and metabolic dysregulation, contributes to the development of pulmonary hypertension (PH). Pyrroloquinoline quinone (PQQ), a potent natural antioxidant with anti-diabetic, neuroprotective, and cardioprotective properties, is known to promote mitochondrial biogenesis. However, its effect on cellular proliferation, apoptosis resistance, mitochondrial and metabolic alterations associated with PH remains unexplored. The current study was designed to investigate the effect of PQQ in the treatment of PH. Human pulmonary artery smooth muscle cells (HPASMCs), endothelial cells (PAECs), and primary cultured cardiomyocytes were subjected to hypoxia to induce PH-like phenotype. Furthermore, Sprague Dawley (SD) rats injected with monocrotaline (MCT) (60 mg/kg, SC, once) progressively developed pulmonary hypertension. PQQ treatment (2 mg/kg, PO, for 35 days) attenuated cellular proliferation and promoted apoptosis via a mitochondrial-dependent pathway. Furthermore, PQQ treatment in HPASMCs prevented mitochondrial and metabolic dysfunctions, improved mitochondrial bioenergetics while preserving respiratory complexes, and reduced insulin resistance. In addition, PQQ treatment (preventive and curative) significantly attenuated the increase in right ventricle pressure and hypertrophy as well as reduced endothelial dysfunction and pulmonary artery remodeling in MCT-treated rats. PQQ also prevented cardiac fibrosis and improved cardiac functions as well as reduced inflammation in MCT-treated rats. Altogether, the above findings demonstrate that PQQ can attenuate mitochondrial as well as metabolic abnormalities in PASMCs and also prevent the development of PH in MCT treated rats; hence PQQ may act as a potential therapeutic agent for the treatment of PH.


Asunto(s)
Hipertensión Pulmonar , Animales , Células Endoteliales , Humanos , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Monocrotalina , Cofactor PQQ/metabolismo , Cofactor PQQ/farmacología , Cofactor PQQ/uso terapéutico , Arteria Pulmonar , Ratas , Ratas Sprague-Dawley
11.
J Med Chem ; 65(1): 120-134, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34914389

RESUMEN

A new class of 2-anilino-3-cyanobenzo[b]thiophenes (2,3-ACBTs) was studied for its antiangiogenic activity for the first time. One of the 2,3-ACBTs inhibited tubulogenesis in a dose-dependent manner without any toxicity. The 2,3-ACBTs significantly reduced neovascularization in both ex vivo and in vivo angiogenic assays without affecting the proliferation of endothelial cells. Neovascularization was limited through reduced phosphorylation of Akt/Src and depolymerization of f-actin and ß-tubulin filaments, resulting in reduced migration of cells. In addition, the 2,3-ACBT compound disrupted the preformed angiogenic tubules, and docking/competitive binding studies showed that it binds to VEGFR2. Compound 2,3-ACBT had good stability and intramuscular profile, translating in suppressing the tumor angiogenesis induced in a xenograft model. Overall, the present study suggests that 2,3-ACBT arrests angiogenesis by regulating the Akt/Src signaling pathway and deranging cytoskeletal filaments of endothelial cells.


Asunto(s)
Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Tiofenos/química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Apoptosis , Neoplasias de la Mama/irrigación sanguínea , Neoplasias de la Mama/patología , Movimiento Celular , Proliferación Celular , Femenino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neovascularización Patológica/patología , Fosforilación , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Life Sci ; 286: 120075, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34678260

RESUMEN

AIMS: Increased proliferation, inflammation, and endothelial microparticle (EMP) generation in the pulmonary vasculature lead to endothelial dysfunction in pulmonary hypertension (PH). Interestingly, MK2, a downstream of p38MAPK, is a central regulator of inflammation, proliferation, and EMP generation in cardiovascular diseases. However, the role of MK2 in pulmonary endothelial dysfunction remains unexplored. MAIN METHODS: The Human Pulmonary Artery Endothelial cells (HPAECs) were exposed to hypoxia (1% O2) for 72 h, and MK2 inhibition was achieved by siRNA treatment. Western blotting, qualitative RT-PCR, immunocytochemistry, flow cytometry and enzyme-linked immunoassays were conducted to study pathological alterations and molecular mechanisms. Neoangiogenesis was studied using cell migration and tubule formation assays. For in vivo study, Male Sprague Dawley rats and MK2 knock-out mice with littermate control were treated with monocrotaline (MCT) 60 mg/kg and 600 mg/kg, respectively (s.c. once in rat and weekly in mice) to induce PH. MMI-0100 (40 µg/kg, i.p. daily for 35 days), was administered in rats to inhibit MK2. KEY FINDINGS: MK2 inhibition significantly decreased inflammation, cell proliferation, apoptosis resistance, and improved mitochondrial functions in hypoxic HPAECs. Hypoxia promoted cell migration, VEGF expression, and angiogenesis in HPAECs, which were also reversed by MK2 siRNA. MK2 inhibition decreased EMP generation and increased the expression of p-eNOS in hypoxic HPAECs, a marker of endothelial function. Furthermore, MK2 deficiency and inhibition both reduced the EMP generation in mice and rats, respectively. SIGNIFICANCE: These findings proved that MK2 is involved in endothelial dysfunction, and its inhibition may be beneficial for endothelial function in PH.


Asunto(s)
Hipertensión Pulmonar/fisiopatología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Apoptosis/fisiología , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Células Endoteliales/metabolismo , Humanos , Hipoxia/metabolismo , Hipoxia/fisiopatología , Inflamación/patología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica/patología , Proteínas Serina-Treonina Quinasas/fisiología , Arteria Pulmonar/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
13.
J Ethnopharmacol ; 278: 114296, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34090907

RESUMEN

ETHNO-PHARMACOLOGICAL RELEVANCE: Withania somnifera (L.) Dunal, commonly known as Ashwagandha, belongs to the family Solanaceae. In Ayurveda, Ashwagandha has been defined as one of the most important herb and is considered to be the best adaptogen. It is also an excellent rejuvenator, a general health tonic and cure for various disorders such as cerebrovascular, insomnia, asthma, ulcers, etc. Steroidal lactones (Withanolides: Withanolide A, Withaferin A, Withanolide D, Withanone, etc) isolated from this plant, possess promising medicinal properties such as anti-inflammatory, immune-stimulatory etc. Standardized root extract of the plant NMITLI-118R (NM) was prepared at CSIR-CIMAP, and was investigated for various biological activities at CSIR-CDRI. Among the notable medicinal properties, NM exhibited excellent neuroprotective activity in the middle cerebral artery occlusion (MCAO) rat model. AIM OF THE STUDY: Endothelial dysfunction is the primary event in the cerebrovascular or cardiovascular disorders, present study was thus undertaken to evaluate vasoprotective potential of NM and its biomarker compound Withanolide A (WA) using rat aortic rings and EA.hy926 endothelial cells. MATERIAL AND METHODS: Transverse aortic rings of 10 weeks old Wistar rats were used to evaluate effect of NM and WA on the vasoreactivity. While, mechanism of NM and WA mediated vasorelaxant was investigated in Ea.hy926 cell line by measuring NO generation, nitrite content, Serine 1177 phosphorylation of eNOS, reduced/oxidized biopterin levels and expression of endothelial nitric oxide synthase (eNOS) mRNA and protein. RESULTS: Fingerprinting of NM using HPLC identified presence of WA in the extract. NM as well as WA exerted moderate vasorelaxant effect in the endothelium intact rat aortic rings which was lesser than acetylcholine (ACh). NM and WA augmented ACh induced relaxation in the rat aortic rings. NM and WA dependent vasorelaxation was blocked by N-nitro-L-arginine methyl ester (L-NAME) or 1H-[1,2,4] oxadiazolo [4,3,-a]quinoxalin-1-one (ODQ), indicating role of NO/cGMP. Further Ea.hy926 cells treated with NM and WA showed accumulation of nitrite content, enhanced NO levels, eNOS expression and eNOS phosphorylation (Serine 1177). CONCLUSION: Altogether NM and WA dependent improvement in the NO availability seems to be mediated by the enhanced eNOS phosphorylation. WA, seems to be one of the active constituent of NM, and presence of other vasoactive substances cannot be ruled out. The data obtained imply that the vasorelaxant property of NM is beneficial for its neuroprotective potential.


Asunto(s)
Aorta/efectos de los fármacos , Óxido Nítrico/metabolismo , Extractos Vegetales/farmacología , Vasodilatadores/farmacología , Withania/química , Witanólidos/farmacología , Animales , Biomarcadores , Línea Celular , Proliferación Celular , Células Endoteliales/efectos de los fármacos , Masculino , Extractos Vegetales/química , Raíces de Plantas/química , Ratas , Ratas Wistar , Vasoconstricción/efectos de los fármacos , Vasodilatadores/química , Witanólidos/química
14.
Int J Pharm ; 603: 120673, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33964338

RESUMEN

Heart failure is major cause of mortality associated with mostly Myocardial infarction (MI). Transplanting mesenchymal stem cells (MSC) have exhibited potential role in myocardial regeneration. Secretion of immune-modulatory cytokines and various growth factors after transplantation plays significant role in remodelling process of MI region. However, low retention, higher shear stress during administration and rejection at host infarct environment hinders therapeutic efficacy. Myocardial regeneration demands for accurate spatio-temporal delivery of MSCs with supportive vascular network that leads to improvement of cardiac function. In this study, injectable alginate based microporous hydrogel has been used to deliver 5-Azacytidine (5-Aza) in zein protein nanoparticle with MSCs for attenuating adverse cardiac remodelling after MI. Zein nanoparticles loaded with 5-Aza were prepared by liquid-liquid dispersion, and it was found that 35% of drug was released in 7 days supported with mathematical modelling. The presence of 5-Aza and zein in developed hydrogel supported in vitro MSC proliferation, migration and angiogenesis. Significant increased expression of cardiac specific markers, GATA4, MEF2C, MLC, SERCA and NKX2.5 was observed in vitro. 5-Aza loaded protein nanoparticle with MSCs encapsulated hydrogels in rat MI model also exhibited substantial improvement of functional cardiac parameters such as cardiac output and ejection fraction. Histopathological analysis showed reduced fibrosis, attenuated infarct expansion and cardiac tissue restoration and angiogenesis. In brief, we developed nanocarrier-hydrogel system a promising strategy for co-delivering 5-Aza as cardiac differentiation cue with MSCs to achieve higher cell retention and enhanced improvement in myocardial regeneration after MI.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Nanopartículas , Zeína , Animales , Azacitidina , Hidrogeles , Ratas , Células Madre
15.
Free Radic Biol Med ; 168: 168-179, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33736980

RESUMEN

NADPH oxidase (Nox) mediates ROS production and contributes to cardiac remodeling. However, macrophage p47phox, a Nox subunit regulating cardiac remodeling, is unclear. We aimed to investigate the role of macrophage p47phox in hypertensive cardiac remodeling. Pressure-overload induced by Angiotensin II (AngII) for two weeks in young adult male p47phox deficient (KO) mice showed aggravated cardiac dysfunction and hypertrophy as indicated from echocardiographic and histological studies in comparison with wild-type littermates (WT). Additionally, LV of AngII-infused KO mice showed augmented interstitial fibrosis, collagen deposition and, myofibroblasts compared to AngII-infused WT mice. Moreover, these changes in AngII-infused KO mice correlated well with the gene analysis of hypertrophic and fibrotic markers. Similar results were also found in the transverse aortic constriction model. Further, AngII-infused KO mice showed elevated circulating immunokines and increased LV leukocytes infiltration and CD206+ macrophages compared to AngII-infused WT mice. Likewise, LV of AngII-infused KO mice showed upregulated mRNA expression of anti-inflammatory/pro-fibrotic M2 macrophage markers (Ym1, Arg-1) compared to AngII-infused WT mice. AngII and IL-4 treated bone marrow-derived macrophages (BMDMs) from KO mice showed upregulated M2 macrophage markers and STAT6 phosphorylation (Y641) compared to AngII and IL-4 treated WT BMDMs. These alterations were at least partly mediated by macrophage as bone marrow transplantation from KO mice into WT mice aggravated cardiac remodeling. Mechanistically, AngII-infused KO mice showed hyperactivated IL-4/STAT6/PPARγ signaling and downregulated SOCS3 expression compared to AngII-infused WT mice. Our studies show that macrophage p47phox limits anti-inflammatory signaling and extracellular matrix remodeling in response to pressure-overload.


Asunto(s)
PPAR gamma , Remodelación Ventricular , Animales , Masculino , Ratones , Angiotensina II , Interleucina-4/genética , Macrófagos , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR gamma/genética , Factor de Transcripción STAT6/genética
17.
Front Cell Infect Microbiol ; 11: 795333, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35127558

RESUMEN

The role of oxidative and nitrosative stress has been implied in both physiology and pathophysiology of metabolic disorders. Inducible nitric oxide synthase (iNOS) has emerged as a crucial regulator of host metabolism and gut microbiota activity. The present study examines the role of the gut microbiome in determining host metabolic functions in the absence of iNOS. Insulin-resistant and dyslipidemic iNOS-/- mice displayed reduced microbial diversity, with a higher relative abundance of Allobaculum and Bifidobacterium, gram-positive bacteria, and altered serum metabolites along with metabolic dysregulation. Vancomycin, which largely depletes gram-positive bacteria, reversed the insulin resistance (IR), dyslipidemia, and related metabolic anomalies in iNOS-/- mice. Such improvements in metabolic markers were accompanied by alterations in the expression of genes involved in fatty acid synthesis in the liver and adipose tissue, lipid uptake in adipose tissue, and lipid efflux in the liver and intestine tissue. The rescue of IR in vancomycin-treated iNOS-/- mice was accompanied with the changes in select serum metabolites such as 10-hydroxydecanoate, indole-3-ethanol, allantoin, hippurate, sebacic acid, aminoadipate, and ophthalmate, along with improvement in phosphatidylethanolamine to phosphatidylcholine (PE/PC) ratio. In the present study, we demonstrate that vancomycin-mediated depletion of gram-positive bacteria in iNOS-/- mice reversed the metabolic perturbations, dyslipidemia, and insulin resistance.


Asunto(s)
Resistencia a la Insulina , Animales , Bacterias Grampositivas/metabolismo , Resistencia a la Insulina/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Vancomicina/farmacología
18.
Int J Mol Sci ; 23(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35008623

RESUMEN

Oxidative and nitrosative stress plays a pivotal role in the incidence of metabolic disorders. Studies from this lab and others in iNOS-/- mice have demonstrated occurrence of insulin resistance (IR), hyperglycemia and dyslipidemia highlighting the importance of optimal redox balance. The present study evaluates role of nitrite, L-arginine, antidiabetics (metformin, pioglitazone) and antibiotics (ampicillin-neomycin combination, metronidazole) on metabolic perturbations observed in iNOS-/- mice. The animals were monitored for glucose tolerance (IPGTT), IR (insulin, HOMA-IR, QUICKI), circulating lipids and serum metabolomics (LC-MS). Hyperglycemia, hyperinsulinemia and IR were rescued by nitrite, antidiabetics, and antibiotics treatments in iNOS-/- mice. Glucose intolerance was improved with nitrite, metformin and pioglitazone treatment, while ampicillin-neomycin combination normalised the glucose utilization in iNOS-/- mice. Increased serum phosphatidylethanolamine lipids in iNOS-/- mice were reversed by metformin, pioglitazone and ampicillin-neomycin; dyslipidemia was however marginally improved by nitrite treatment. The metabolic improvements were associated with changes in selected serum metabolites-purines, ceramide, 10-hydroxydecanoate, glucosaminate, diosmetin, sebacic acid, 3-nitrotyrosine and cysteamine. Bacterial metabolites-hippurate, indole-3-ethanol; IR marker-aminoadipate and oxidative stress marker-ophthalmate were reduced by pioglitazone and ampicillin-neomycin, but not by nitrite and metformin treatment. Results obtained in the present study suggest a crucial role of gut microbiota in the metabolic perturbations observed in iNOS-/- mice.


Asunto(s)
Ampicilina/farmacología , Dislipidemias/metabolismo , Resistencia a la Insulina , Metaboloma , Metformina/farmacología , Neomicina/farmacología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Nitritos/farmacología , Pioglitazona/farmacología , Animales , Quimioterapia Combinada , Dislipidemias/sangre , Glucosa/metabolismo , Homeostasis/efectos de los fármacos , Hipoglucemiantes/farmacología , Insulina/metabolismo , Masculino , Metaboloma/efectos de los fármacos , Metabolómica , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico/metabolismo
19.
ACS Biomater Sci Eng ; 6(12): 6710-6725, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33320599

RESUMEN

Repair of critical size bone defects is a clinical challenge that usually necessitates the use of bone substitutes. For successful bone repair, the substitute should possess osteoconductive, osteoinductive, and vascularization potential, with the ability to control post-implantation infection serving as an additional advantage. With an aim to develop one such substitute, we optimized a zinc-doped hydroxyapatite (HapZ) nanocomposite decorated on reduced graphene oxide (rGO), termed as G3HapZ, and demonstrated its potential to augment the bone repair. The biocompatible composite displayed its osteoconductive potential in biomineralization studies, and its osteoinductive property was confirmed by its ability to induce mesenchymal stem cell (MSC) differentiation to osteogenic lineage assessed by in vitro mineralization (Alizarin red staining) and expression of osteogenic markers including runt-related transcription factor 2 (RUNX-2), alkaline phosphatase (ALP), type 1 collagen (COL1), bone morphogenic protein-2 (BMP-2), osteocalcin (OCN), and osteopontin (OPN). While the potential of G3HapZ to support vascularization was displayed by its ability to induce endothelial cell migration, attachment, and proliferation, its antimicrobial activity was confirmed using S. aureus. Biocompatibility of G3HapZ was demonstrated by its ability to induce bone regeneration and neovascularization in vivo. These results suggest that G3HapZ nanocomposites can be exploited for a range of strategies in developing orthopedic bone grafts to accelerate bone regeneration.


Asunto(s)
Células Madre Mesenquimatosas , Nanocompuestos , Óxido de Zinc , Proliferación Celular , Células Cultivadas , Durapatita , Grafito , Staphylococcus aureus , Zinc
20.
Antioxidants (Basel) ; 9(8)2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32806494

RESUMEN

iNOS, an important mediator of inflammation, has emerged as an important metabolic regulator. There are conflicting observations on the incidence of insulin resistance (IR) due to hyperglycemia/dyslipidemia in iNOS-/- mice. There are reports that high fat diet (HFD) fed mice exhibited no change, protection, or enhanced susceptibility to IR. Similar observations were also reported for low fat diet (LFD) fed KO mice. In the present study chow fed iNOS-/- mice were examined for the incidence of IR, and metabolic perturbations, and also for the effect of sodium nitrite supplementation (50 mg/L). In IR-iNOS-/- mice, we observed significantly higher body weight, BMI, adiposity, blood glucose, HOMA-IR, serum/tissue lipids, glucose intolerance, enhanced gluconeogenesis, and disrupted insulin signaling. Expression of genes involved in hepatic and adipose tissue lipid uptake, synthesis, oxidation, and gluconeogenesis was upregulated with concomitant downregulation of genes for hepatic lipid excretion. Nitrite supplementation restored NO levels, significantly improved systemic IR, glucose tolerance, and also reduced lipid accumulation by rescuing hepatic insulin sensitivity, glucose, and lipid homeostasis. Obesity, gluconeogenesis, and adipose tissue insulin signaling were only partially reversed in nitrite supplemented iNOS-/- mice. Our results thus demonstrate that nitrite supplementation to iNOS-/- mice improves insulin sensitivity and metabolic homeostasis, thus further highlighting the metabolic role of iNOS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...